802 research outputs found

    Rilevamento di ozono presso i siti forestali UN/ECE Level I nella Provincia di Trento nel 2007

    Get PDF
    A causa del suo alto potere ossidante, dei suoi elevati livelli e della sua ampia diffusione in aree rurali e forestali, l’ozono troposferico (O3) è ritenuto il contaminante gassoso di potenziale maggiore pericolosità per la vegetazione agraria, semi-naturale e forestale. L’obiettivo del presente studio è ottenere stime realistiche dell’esposizione ad O3 della vegetazione forestale della provincia di Trento, essenziali per poter valutare se siano ipotizzabili effetti di questo inquinante sulla vegetazione. A tale scopo sono stati installati 15 siti di misura delle concentrazioni di O3, riferendosi ai punti della rete UE e UN/ECE di monitoraggio delle foreste di Livello I della provincia di Trento; l’ozono è stato misurato utilizzando campionatori passivi, che forniscono un dato settimanale, successivamente convertito in valori di concentrazione media oraria. L’affidabilità dei dati ottenuti è stata verificata per confronto con i dati forniti in parallelo da centraline automatiche. Le concentrazioni medie settimanali di O3 rilevate nel periodo 6 giugno - 19 settembre 2007 sono risultate comprese tra 62.4±12.4 e 130.6±22.3 μg*m-3. In termini di AOT40, l’indicatore di rischio utilizzato dalla normativa UE e dall’UN/ECE, i valori sono tali da prefigurare frequenti superamenti dei livelli critici nel corso della stagione estiva 2007. Si discutono nel dettaglio andamenti spaziali e temporali dei dati raccolti e si ipotizza una linea futura per la prosecuzione del lavoro nell’ottica di una maggiore comprensione del fenomeno

    Bioindication of troposheric ozone by native vegetation: the potential of Viburnum lantana for large-scale surveys

    Get PDF
    Tropospheric ozone is one of the most important phytotoxic air pollutant. Biomonitoring by native plants is an option when the assessment of its impact on vegetation in large-scale surveys and in remote areas is of concern. The shrub species Viburnum lantana L. (wayfaring tree) is known to be sensitive to ozone, develops specific symptoms consisting in red stipples on the upper surface, and has a wide spatial distribution. However it is not fully known if it meets all the requirements to be used as an in situ bioindicator (Doley, 2010). In particular, the actual responsiveness to ozone of native plants and the relationship between the intensity of responses and the levels of exposure to the pollutant under field conditions remain to be evaluated. For these purposes, two field studies were carried out in Trentino (North Italy) at local (1) and large scale (2). (1) Firstly, at local level, we considered two 1x1 km quadrates characterized by different ozone levels. A fully randomized design was adopted to ensure within-quadrate replications and to select V. lantana plants for the monitoring of ozone-specific foliar symptoms development, the chlorophyll (Chl) content and the fluorescence of Chl a during the entire growing season. (2) Secondly, a stratified (elevation x ozone) random design was used to test the response of V. lantana in terms of symptomatic plant percentage at larger scale (6200 km2). Overall, the results of the two field studies allowed to verify a temporal development of the responses of V. lantana consistent with the trend of ozone exposure (Gottardini et al., 2010), and an higher frequency of symptomatic plants where ozone levels were also higher. However, the frequency of symptoms was not always proportionate to the level of ozone exposure. At the same time of the onset and spread of foliar symptoms, a decrease in the foliar Chl content and in photosynthetic performance occurred. V. lantana seems suitable as a bioindicator in situ to qualitatively assess the potential impact of ozone

    Uncertainties of synchrotron microCT-based digital volume correlation bone strain measurements under simulated deformation

    Get PDF
    Digital Volume Correlation (DVC) is used to measure internal displacements and strains in bone. Recent studies have shown that synchrotron radiation micro-computed tomography (SR-microCT) can improve the accuracy and precision of DVC. However, only zero-strain or virtually-moved test have been used to quantify the DVC uncertainties, leading to potential underestimation of the measurement errors. In this study, for the first time, the uncertainties of a global DVC approach have been evaluated on repeated SR-microCT scans of bovine cortical bone (voxel size: 1.6μm), which were virtually deformed for different magnitudes and along different directions. The results showed that systematic and random errors of the normal strain components along the deformation direction were higher than the errors along unstrained directions. The systematic percentage errors were smaller for larger virtual deformations. The random percentage error was in the order of 10% of the virtual deformation. However, higher errors were localized at the boundary of the volumes of interest, perpendicular to the deformation direction. When only the central region of the samples was considered (100 micrometers layers removed from the borders where the deformation was applied), the errors in the direction of virtual deformation were comparable to the errors in the unstrained directions. In conclusion, the method presented to estimate the uncertainties of DVC is suitable for testing anisotropic specimens as cortical bone. The good agreement between the uncertainties in measurements of strain components obtained with this approach and with the simpler zero-strain-test suggests that the latter is adequate in the tested deformation scenarios

    Forests attenuate temperature and air pollution discomfort in montane tourist areas

    Get PDF
    Forests deliver many ecosystem services, from provisioning to regulating and cultural services. We aimed at demonstrating microclimatic regulation and pollutant removal as especially relevant ecosystem services when considering the tourism vocation of the Alpine regions. A study was realized along an altitudinal gradient (900–1600 m a.s.l.) in Trentino, northern Italy, an area with high touristic presence (ca. 9.3 million overnight stays in summer 2021). Nitrogen dioxide (NO2 , µg m−3 ), ozone (O3 , µg m−3 ) concentrations, air temperature (T, ◦C), and relative humidity (RH, %) were simultaneously measured in three open-field sites (OF) and below-canopy Norway spruce forest stands (FO) during the period 23 May–7 August 2013. The temperature–humidity index (THI) was calculated. We found a distinct mitigating effect of forest on T, with lower maximum (−30.6%) and higher minimum values (+6.3%) in FO than in OF. THI supported a higher comfort sensation in FO than in OF, especially in the central part of the day. NO2 concentrations did not differ between OF and FO; ozone concentrations were lower in FO than OF. This study confirms the role of forests in providing several ecosystem services beneficial for forest users, especially relevant for promoting nature-based tourism in the Alpine regio

    Precision of Digital Volume Correlation Approaches for Strain Analysis in Bone Imaged with Micro-Computed Tomography at Different Dimensional Levels

    Get PDF
    Accurate measurement of local strain in heterogeneous and anisotropic bone tissue is fundamental to understand the pathophysiology of musculoskeletal diseases, to evaluate the effect of interventions from preclinical studies, and to optimize the design and delivery of biomaterials. Digital volume correlation (DVC) can be used to measure the three-dimensional displacement and strain fields from micro-computed tomography (μCT) images of loaded specimens. However, this approach is affected by the quality of the input images, by the morphology and density of the tissue under investigation, by the correlation scheme, and by the operational parameters used in the computation. Therefore, for each application, the precision of the method should be evaluated. In this paper, we present the results collected from datasets analyzed in previous studies as well as new data from a recent experimental campaign for characterizing the relationship between the precision of two different DVC approaches and the spatial resolution of the outputs. Different bone structures scanned with laboratory source μCT or synchrotron light μCT (SRμCT) were processed in zero-strain tests to evaluate the precision of the DVC methods as a function of the subvolume size that ranged from 8 to 2,500 µm. The results confirmed that for every microstructure the precision of DVC improves for larger subvolume size, following power laws. However, for the first time, large differences in the precision of both local and global DVC approaches have been highlighted when SRμCT or in vivo μCT images were used instead of conventional ex vivo μCT. These findings suggest that in situ mechanical testing protocols applied in SRμCT facilities should be optimized to allow DVC analyses of localized strain measurements. Moreover, for in vivo μCT applications, DVC analyses should be performed only with relatively course spatial resolution for achieving a reasonable precision of the method. In conclusion, we have extensively shown that the precision of both tested DVC approaches is affected by different bone structures, different input image resolution, and different subvolume sizes. Before each specific application, DVC users should always apply a similar approach to find the best compromise between precision and spatial resolution of the measurements

    Assessment of AC Corrosion Probability in Buried Pipelines with a FEM-Assisted Stochastic Approach

    Get PDF
    In this paper, a stochastic approach is combined with field theory and circuit methods to study how the geometrical and electrical properties of holidays (defects or pores in the insulating coating) in a metallic pipeline influence the probability of exceeding the current density limit for corrosion. Three-dimensional FEM simulations are conducted to assess the influence of the shape and electrical resistivity of the pore on the computed spread resistance value. The obtained results are then used to evaluate the probability of exceeding a given current density value for different sizes of pore and soil resistivities. Finally, a case of 50 Hz interference along a pipeline-transmission line routing is examined. The probabilistic approach presented in this paper allows the pipeline sections more subjected to the induced AC corrosion risk to be identified to be used as an auxiliary tool for adopting preventive protection countermeasures. Lastly, unlike most papers devoted to assessing electromagnetic interference on pipelines, the present work uses a probabilistic rather than a deterministic approach, representing its main novelty aspect

    Experimental validation of a subject-specific finite element model of lumbar spine segment using digital image correlation

    Get PDF
    Pathologies such as cancer metastasis and osteoporosis strongly affect the mechanical properties of the vertebral bone and increase the risk of fragility fractures. The prediction of the fracture risk with a patient-specific model, directly generated from the diagnostic images of the patient, could help the clinician in the choice of the correct therapy to follow. But before such models can be used to support any clinical decision, their credibility must be demonstrated through verification, validation, and uncertainty quantification. In this study we describe a procedure for the generation of such patient-specific finite element models and present a first validation of the kinematics of the spine segment. Quantitative computed tomography images of a cadaveric lumbar spine segment presenting vertebral metastatic lesions were used to generate the model. The applied boundary conditions replicated a specific experimental test where the spine segment was loaded in compression-flexion. Model predictions in terms of vertebral surface displacements were compared against the full-field experimental displacements measured with Digital Image Correlation. A good agreement was obtained from the local comparison between experimental data and simulation results (R2 > 0.9 and RMSE% <8%). In conclusion, this work demonstrates the possibility to apply the developed modelling pipeline to predict the displacement field of human spine segment under physiological loading conditions, which is a first fundamental step in the credibility assessment of these clinical decision-support technology

    Local displacement and strain uncertainties in different bone types by digital volume correlation of synchrotron microtomograms

    Get PDF
    Understanding bone mechanics at different hierarchical levels is fundamental to improve preclinical and clinical assessments of bone strength. Digital Volume Correlation (DVC) is the only experimental measurement technique used for measuring local displacements and calculating local strains within bones. To date, its combination with laboratory source micro-computed tomography (LS-microCT) data typically leads to high uncertainties, which limit its application. Here, the benefits of synchrotron radiation micro-computed tomography (SR-microCT) for DVC are reported. Specimens of cortical and trabecular bovine bone and murine tibiae, were each scanned under zero-strain conditions with an effective voxel size of 1.6 μm. In order to consider the effect of the voxel size, analyses were also performed on downsampled images with voxel size of 8 μm. To evaluate displacement and strain uncertainties, each pair of tomograms was correlated using a global DVC algorithm (ShIRT-FE). Displacement random errors for original SR-microCT ranged from 0.024 to 0.226 μm, depending on DVC nodal spacing. Standard deviation of strain errors was below 200 microstrain (ca. 1/10 of the strain associated with physiological loads) for correlations performed with a measurement spatial resolution better than 40 μm for cortical bovine bone (240 μm for downsampled images), 80 μm for trabecular bovine bone (320 μm for downsampled images) and murine tibiae (120 μm for downsampled images). This study shows that the uncertainties of SR-microCT-based DVC, estimated from repeated scans, are lower than those obtained from LS-microCT-based DVC on similar specimens and low enough to measure accurately the local deformation at the tissue level

    Experimental study exploring the factors that promote rib fragility in the elderly

    Get PDF
    Rib fractures represent a common injury type due to blunt chest trauma, affecting hospital stay and mortality especially in elderly patients. Factors promoting rib fragility, however, are little investigated. The purpose of this in vitro study was to explore potential determinants of human rib fragility in the elderly. 89 ribs from 13 human donors (55\u201399&nbsp;years) were loaded in antero-posterior compression until fracture using a material testing machine, while surface strains were captured using a digital image correlation system. The effects of age, sex, bone mineral density, rib level and side, four global morphological factors (e.g. rib length), and seven rib cross-sectional morphological factors (e.g. cortical thickness, determined by \u3bcCT), on fracture load were statistically examined using Pearson correlation coefficients, Mann\u2013Whitney U test as well as Kruskal\u2013Wallis test with Dunn-Bonferroni post hoc correction. Fracture load showed significant dependencies (p &lt; 0.05) from bone mineral density, age, antero-posterior rib length, cortical thickness, bone volume/tissue volume ratio, trabecular number, trabecular separation, and both cross-sectional area moments of inertia and was significantly higher at rib levels 7 and 8 compared to level 4 (p = 0.001/0.013), whereas side had no significant effect (p = 0.989). Cortical thickness exhibited the highest correlation with fracture load (r = 0.722), followed by the high correlation of fracture load with the area moment of inertia around the longitudinal rib cross-sectional axis (r = 0.687). High correlations with maximum external rib surface strain were detected for bone volume/tissue volume ratio (r = 0.631) and trabecular number (r = 0.648), which both also showed high correlations with the minimum internal rib surface strain (r = 12 0.644/ 12 0.559). Together with rib level, the determinants cortical thickness, area moment of inertia around the longitudinal rib cross-sectional axis, as well as bone mineral density exhibited the largest effects on human rib fragility with regard to the fracture load. Sex, rib cage side, and global morphology, in contrast, did not affect rib fragility in this study. When checking elderly patients for rib fractures due to blunt chest trauma, patients with low bone mineral density and the mid-thoracic area should be carefully examined

    Assessing the mechanical weakness of vertebrae affected by primary tumors : a feasibility study

    Get PDF
    Patients spend months between the primary spinal tumor diagnosis and the surgical treatment, due to the need for performing chemotherapy and/or radiotherapy. During this period, they are exposed to an unknown risk of fracture. The aim of this study was to assess if it is possible to measure the mechanical strain in vertebrae affected by primary tumors, so as to open the way to an evidence-based scoring or prediction tool. We performed biomechanical tests on three vertebrae with bone tumor removed from patients. The tests were designed so as not to compromise the standard surgical and diagnostic procedures. Non-destructive mechanical tests in combination with state-of-the-art digital image correlation allowed to measure the distribution of strain on the surface of the vertebra. Our study has shown that the strains in the tumor region is circa 3 times higher than in the healthy bones, with principal strain peaks of 40,000/−20,000 microstrain, indicating a stress concentration potentially triggering vertebral fracture. This study has proven it is possible to analyze the mechanical behavior of primary tumor vertebrae as part of the clinical treatment protocol. This will allow building a tool for quantifying the risk of fracture and improving decision making in spine tumors
    • …
    corecore